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The general problem of stationary, longitudinal flow of a conducting 

fluid over a cylindrical surface under the influence of a magnetic field 

and suction or blowing was investigated in :d. As a result of an 

investigation of the basic equations, a class of exact solutions was 

found for the case where the longitudinal components of the velocity 

and field depend only on the coordinate normal to the surface. Several 

possibilities for obtaining exact solutions with a more complicated 

structure were also indicated. Below, an example of such a solution is 

constructed for the problem of flow over a porous plate. 

Let us consider a porous cylindrical surface in a flow of viscous, 

incompressible fluid directed along the generatrix. oriented along the 

z-axis. Let us assume, following [ll, that the velocity and magnetic 

field vectors have the form 

v = v, + 2’C2, V y z’X (2, Y) e, -47 r,, (.r, Y) ey, v = c* (2, Y) 

H = HI+ he,. HI := H, (r, Y) e, + 11, CT, Y) e,,, h = H, (5, Y, 4 

Putting these expressions in the general equations of magnetohydro- 

dynamics, we find, first of all, that h = ,8(x, y) + hu(z, y) and 

P (VL VN,_ = - VP* + -& (II,_ 77) H, +qrvl 
( 

a a 
U7’ =e,= + egay (1) 

, 

(VI O)H, = (11, G)V, + vm CHl, div V; = 0 (2) 

div HI = -0, e2$VIne=c (3) 
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v~ Vho = HI Vu - b-j- v&h, 

The constants C and Pz are related to the gradient of the .full pres- 

sure by the equation 

-g- = cz + P, ( P*=P+g) 

Vith the first group of equations of this system, (1) to (4)) to- 
gether with the proper boundary conditions and the equations for the 

medium interior to the flow, it is possible to find the transverse velo- 

city V 1’ the transverse field II I, and the function 8(x, y). Equation 

(4) is not independent. It may be found from the first of equations (2) 

by taking the operation div. 

Once V., El I and 8 are found, v and h0 are determined from system 

(5). Thus the geueral problem separates into two, a linear and a non- 

1 inear one, which can be solved successively. System (1) to (5) is 

applicable not only to external flow problems but also to problems of 

internal flow in tubes, under the condition that the fluid which is 

blown in over one part of the wall is all sucked away over another part, 

and the mass flow in the basic direction remains constant. 

Equations (1) to (2) coincide exactly with the corresponding equa- 

tions for the plane problem of magnetohydrodynamics; instead of the 

usual equation div II L = 0, here there are two equations (3), contain- 

ing an additional unknown, scalar function 8. If 8 E 0. then C = 0, and 

system (1) to (3) coincides entirely with the equations of the plane 

problem. Therefore, each solution of the latter also satisfies system 

(1) to (3) and generates a corresponding exact solution of system (5). 

This case, with II ,_ = aV L, a = const and rot V I = 0, is considered in 

[ll . 

The second equation of (3) is also satisfied indentically for arbi- 

trary 6 = const, different from zero. However, this does not exhaust the 

possible solutions of system (1) to (3). A simple exact solution with 

6 = const, in terms of tabulated functions, can be obtained by assuming 

that, over the whole flow field, the vectors V I and H L preserve a con- 

stant direction, for example, along the y-axis. In this case, after 

elimination of 6 equations (1) to (3) take the form 
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The second equation of (7) can be integrated by quadratures, the re- 

sult containing two arbitrary functions of x. Putting this result into 

the remaining equation, 

has one of two forms 

it can be shown that VY E v0 = const, while H 
Y 

H, = Hoem” (H, = const, o = vo / v,,,) (6) H, = Ha = const, 

In the first case, 8 = C = 0; this solution belongs to the class 

which was investigated in [l]. It was used in [2-3: for flows in a half- 

space, and in [4-61 it was applied to flow between parallel walls: The 

second case corresponds to 8 = - HOa exp oy and C = 0. Ue may note that 

equations (8) may also be found by another approach, by looking, as in 

[?I, for plane magnetic fields which give rise to flows with a given 

structure for the velocity vector. 

Let us investigate equations (5) further, for an exponentially vary- 

ing magnetic field under the assumption that v and hO depend only on y 

(9) 

(10) 

2 d% 

= - P, _’ ~~n~e~u h, f q dy2 

d2h, 
’ + ‘77l dy2 (a= H, I vo) 

For finding the pressure, we shall have, from (1) 

l?/>* vOSaa 
e2W 

ay 4iW, 

Integrating (10) with respect to y. we obtain 

aho v, -ay’ - v& = cE - clvove”‘J (11) 

where E = E = const is the electric field component. After elimination 

of ho ’ = ohi from (9) and (ll), we have 

d2V v. dv a2vOz ~- _- ---- oe WV = p* - -- cE1 OY 

dy2 v dy 4nv,,,7l 1 -zGe 
7hJCLL’ 

El = - 
rl 

l The literature on this question is by no means exhausted with the 

cited references. Only the most recent papers are mentioned here: the 

necessary bibliographical information may be found in them. 
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or, putting c = coy 

The general solution of this equation has the form 

v = E” [WshE) 9 C, K, M) 1 - $ [K. (mE) s(+ - & “) I, (mS) 

- 1, bd) 1 (+ - s E) K, (d$i-‘-” d&-j 

Here, Is and Ks are Bessel functions of imaginary argument. 

The quantity he is found from (11) by quadrature 

With formulas (13) and (14). one can investigate 

(12) 

E-l-“& _ 

(13) 

(14) 

the boundary value 
problems of flow in a half-space and between parallel walls. For example, 
for flow in a half-space y > 0 with suction at the boundary (v,, < 0). 
the constants Cl, C,, Cj and E can be easily related to the limiting 

values of v and h,,, by putting 

v + VW, h, + %c for y -+ M (E -+ 0) 

L’ -+ VW, ho * &,j for y --t 0 (E -+ 1) (15) 

These conditions are satisfied by the solution 

1 

v = Es 
I 
‘%I, (my) + C&s hi) - f$ \[K. (m5) I, (mt) - KS (mt) I, (mat)] trS dt} 

n,=E(C,- J?$+ai v(t)$) E (p=2+, P,=O) 

E 

I, (mt) tP dt 

0 

I, (mt) t-$ dt, C, = h, - h, 

0 

The shearing stress on the boundary, vw = q(&/ay),=,. corresponding 
to the velocity distribution (16). is expressed in the form 

z Pvom w - 
2s I, (m) 

I, (mt) t-’ dt 11 (18) 
0 
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From this, we obtain for II << 1 

2u,zpvo VW- zoc 
i 

avoh, m 
-t ___ 

&cT(Cll s ! 

For II = 0. this formula becomes the usual hydrodynamic relation, 

7 = PVe(Vu - VW). If the wall 

&ishes at infinity (vw = 

is at rest and the magnetic field 

quantity 17w/ 

h, = O), then, as may be seen from (la), the 

d ecreases monotonically with increasing m. 

After finding the distributions of velocity and magnetic field, the 

temperature field can be calculated. We start with the energy equation 

in the form 

(1% 

Going over to the variables c and 5 = oz, we obtain 

pm= Eg!E, h = - II& -i- h, (EJ (20) 

Here, the functions h, (<) and u(t) are known from equations (16) and 

(17). We further denote - 

Q‘,=+(+?+g), 

and look for a solution of (20) 

T = Tu (E) 

We obtain for the functions Ti(<) the system 

(I- +‘=&SaTa”+ Qz. (I- +‘,=+T~“C Q1 

(l-~)~T,f-ii,(~~T/+2Ta,-~T1+Qo 
UO 

with the conditions 

T = T, when y -, 03 (E -+ O), 

From (21) we find by quadrature 

T = T, when TV = 0 (E + 1) 

1 

To=T,_ “1-g - 
2’0 m 

Qo) +- 

- 2”TZ 
uo 

(21) 

(22) 

(23) 
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+i (9-2 -- 
E. 

Q,) f - EP”’ \ (?! - s - Qo) ~-1-p”’ d< 

i 
1 

T, = (EPm - 1) SC ?$- Ql)++\ (q - Q1)$- 

0 i 

- f” j (+ _ Q,) E-‘-‘m do , T, = 8ny& 5” tfm- 2 - 1) 

From here, the formula for heat flux at the wall is 

d7 
Qw = -k - ( 1 ay y=o 

= ko -i 52 s- &,[@$- Q1)$] - 
i 

1 

-pTn T, _ T, + E;f- _ p _ 
Qo) 3) (24) 

n 

For u0 - 0, the solution (16), (17) and (23) obtained above goes over 

into the solution of the problem with uniform transverse field [81, 

since, in that case H - const and 6 - 0. Therefore, as may be easily 

shown, it is not a geieralization of the results of [71, where a plane 

problem of the type 

V = ep (~1, H = H, (y) e, + (d f ho (Y)) e,, 8 = const 

was investigated, notwithstanding their apparent similarity. We may note 

that the solution of [TI has an arisymmetric analog (see, for example, 

[9J), while the problem investigated above has no such analog: it is 

easy to prove that, for vr f 0 and &fz/& y 0, the magnetohydrodynamic 

equations do not allow a solution of the form 

V = u, (r) e, + z!z (r) e,, H = H, (r) e, -J- Ha (r) ee 3; H, (r, 2) e, 

It should be stated, in closing, that the practical realization of 

the situation described by the obtained solution is very difficult. 
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